Some Genes Are Transmitted to Offspring in Groups via the Phenomenon of Gene Linkage (2024)

Some Genes Are Transmitted to Offspring in Groups via the Phenomenon of Gene Linkage (1)

Black fly with short wings

Although Mendel's principle of independent assortment states that alleles of different genes will segregate independently into gametes, in reality, this is not always the case. Sometimes, alleles of certain genes are inherited together, and they do not appear to undergo independent assortment at all.

Indeed, shortly after Mendel's discoveries about inheritance patterns became widely known, numerous researchers began to notice exceptions to his principles. For example, they realized that some crosses contradicted Mendel's principle of independent assortment, because these crosses produced organisms with certain phenotypes far more frequently than traditional Mendelian genetics predicted.

Based on these findings, these scientists hypothesized that certain alleles of one gene were somehow coupled with certain alleles of another gene; however, they were not sure how this could occur. This phenomenon is now known as genetic linkage, and it generally describes an inheritance pattern in which two genes located in close proximity to each other on the same chromosome have a biased association between their alleles. This, in turn, causes these alleles to be inherited together instead of assorting independently. Genetic linkage is a violation of the Mendelian principle of independent assortment.

Independent assortment in test crosses

To understand linkage, we must first compare it to an example of independent assortment of parental gametes. The best way to generate such an example is through a dihybrid test cross, which considers two different genes during a cross between two heterozygote parents. Mendel's principle of independent assortment predicts that the alleles of the two genes will be independently distributed into gametes.

Thus, according to Mendel's principles, a dihybrid cross between two heterozygous fruit flies with brown bodies and red eyes (BbEe X BbEe) should yield offspring with nine possible genotypes (BBEE, BBEe, BBee, BbEE, BbEe, Bbee, bbEE, bbEe, and bbee) and four possible phenotypes (brown body with red eyes, brown body with brown eyes, black body with red eyes, and black body with brown eyes) (Figure 1, left). In this case, the ratio of phenotypes observed among the offspring is 9 (brown body, red eyes): 3 (brown body, brown eyes): 3 (black body, red eyes): 1 (black body, brown eyes) (Figure 1, right). This 9:3:3:1 phenotypic ratio is the classic Mendelian ratio for a dihybrid cross in which the alleles of two different genes assort independently into gametes.

Some Genes Are Transmitted to Offspring in Groups via the Phenomenon of Gene Linkage (2)

Figure 1:A classic Mendelian example of independent assortment: the 9:3:3:1 phenotypic ratio associated with a dihybrid cross (BbEe × BbEe).

Figure Detail


In another example of Mendel's independent assortment principle, a test cross between a heterozygous BbEe fly and a hom*ozygous bbee fly will yield offspring with only four possible genotypes (BbEe, Bbee, bbEe, and bbee) and four possible phenotypes (brown body with red eyes, brown body with brown eyes, black body with red eyes, and black body with brown eyes), as shown in Figure 2. Thus, in this case, the ratio of phenotypes observed among the offspring will be 1 (brown body, red eyes): 1 (brown body, brown eyes): 1 (black body, red eyes): 1 (black body, brown eyes).

Some Genes Are Transmitted to Offspring in Groups via the Phenomenon of Gene Linkage (3)

Figure 2:This 1:1:1:1 phenotypic ratio is the classic Mendelian ratio for a test cross in which the alleles of the two genes assort independently into gametes (BbEe × bbee).

Figure Detail


Exceptions to independent assortment

Some Genes Are Transmitted to Offspring in Groups via the Phenomenon of Gene Linkage (4)

Figure 3:In fruit flies, the dominant V allele produces long wings, whereas the recessive v allele produces vestigial wings. Thus, flies with the genotype VV or Vv will have long wings, and flies with the genotype vv will have vestigial wings.

In nature, some fruit fly traits like those described above assort independently, whereas others do not. As an example, consider the relationship between fruit fly body color and wing length. Here, the gene for wing length is represented by two alleles, V and v; the V allele codes for long wings, which is the dominant phenotype, and the v allele codes for short, misshapen wings (called vestigial wings), which is the recessive phenotype (Figure 3).

Some Genes Are Transmitted to Offspring in Groups via the Phenomenon of Gene Linkage (5)

Figure 4:On the left is the expected phenotypic ratio of the offspring from a BbVv × bbvv cross (1:1:1:1). However, because the alleles BV and bv are linked, the observed phenotypic ratio is much different (5:1:1:5) than the expected ratio.

In order to observe the inheritance pattern associated with fruit fly body color and wing length, a test cross between a BbVv fly and a bbvv fly can be performed. The results of this cross, however, will not follow the classic 1:1:1:1 phenotypic ratio expected with independent assortment. Instead, the offspring of this particular cross will be present in a 5:1:1:5 ratio (5 brown body with long wings: 1 brown body with vestigial wings: 1 black body with long wings: 5 black body with vestigial wings). These results indicate that there is a bias toward brown body color and normal wings being inherited together (BV), as well as toward black body color and vestigial wings being inherited together (bv), from the parent with the BbVv genotype (Figure 4). Note that the parent with the bbvv genotype can only contribute bv alleles.

What is the reason for this 5:1:1:5 non-Mendelian phenotypic ratio? It turns out that the body color and wing length genes are linked, which means they are located very close to each other on the same chromosome. The consequence of this is that these gene alleles are much less likely to segregate independently into gametes. In addition, if two genes are linked in this way, then gametes are more likely to contain specific allele combinations. In this example, those combinations of alleles are BV and bv. As such, the heterozygous parent produces more BV and bv gametes than Bv and bV gametes. (Recall that the hom*ozygous parent can only produce bv gametes.) This is why, when the BbVv fly is crossed with the bbvv fly, the resulting offspring are more likely to have BbVv and bbvv genotypes than Bbvv and bbVv genotypes, and the observed phenotypic ratio is 5:1:1:5. In fact, because the alleles do not assort independently into gametes during meiosis, Punnett squares like the ones shown in Figures 2 and 3 cannot be used to accurately predict inheritance patterns for crosses involving linked genes.

To return to the fruit fly example, linkage means that the BbVv parent is more likely to produce gametes that match those contributed by its own parents: BV and bv. Therefore, offspring with parental genotypes (BbVv and bbvv) are more common than offspring with non-parental, or recombinant, genotypes (Bbvv and bbVv) after the test cross. This means the parental genotypes and their corresponding phenotypes are observed five times more often than the recombinant genotypes and their corresponding phenotypes.

Summary

What is the lesson to be learned from the body color-wing length example? In short, whenever two genes are linked because of their location on a chromosome, their alleles will not segregate independently during gamete formation. As a result, test crosses involving alleles of linked genes will yield phenotypic ratios that stray from the classic Mendelian ratios. Also in the case of linked genes, the phenotypic ratio will show higher numbers of offspring with the parental genotypes than offspring with the recombinant genotypes.

Make your own fly

Thomas Hunt Morgan

  • The fly geneticist and his remarkable findings

Breeding flies is an exciting way to learn genetics. There are many possible allele combinations within a fruit fly, and you can explore them via the interactive image below. Just click on a genotype button from each category below to make your own customized fly (Drosophila melanogaster).

Further Exploration

Key Questions

Who discovered gene linkage?

What is sex linkage in flies?

How can we use linkage to map genes in a chromosome?

What do scientists like to argue about?

Key Concepts

linkage | complete linkage | physical linkage | incomplete linkage

Some Genes Are Transmitted to Offspring in Groups via the Phenomenon of Gene Linkage (2024)

FAQs

Some Genes Are Transmitted to Offspring in Groups via the Phenomenon of Gene Linkage? ›

This phenomenon is now known as genetic linkage, and it generally describes an inheritance pattern in which two genes located in close proximity to each other on the same chromosome have a biased association between their alleles.

What is the phenomenon of gene linkage? ›

A linkage is a phenomenon where two or more linked genes are always inherited together in the same combination for more than two generations. The recombination frequency of the test cross progeny is always lower than 50%. Therefore, if any two genes are completely linked, their recombination frequency is almost 0%.

Are genes that are usually transmitted together are called linked genes? ›

Linkage is the tendency of genes on the same chromosome to segregate together, i.e. linked genes are transmitted to the same gamete more than 50% of the time. The closer genes are to each other, the more frequently they will be transmitted together.

What is gene linkage in genetics? ›

Linkage, as related to genetics and genomics, refers to the closeness of genes or other DNA sequences to one another on the same chromosome. The closer two genes or sequences are to each other on a chromosome, the greater the probability that they will be inherited together.

How are genes transferred from parent to offspring? ›

One copy is inherited from their mother (via the egg) and the other from their father (via the sperm). A sperm and an egg each contain one set of 23 chromosomes. When the sperm fertilises the egg, two copies of each chromosome are present (and therefore two copies of each gene), and so an embryo forms.

Who came up with the phenomenon of gene linked inheritance? ›

Indeed, shortly after Mendel's discoveries about inheritance patterns became widely known, numerous researchers began to notice exceptions to his principles.

What is the phenomenon of gene interaction? ›

Gene interaction is the phenomenon whereby a single character is controlled by two or more genes and each gene affects the expression of the other genes involved. Gene interactions can comprise two or more pairs of genes.

What does it mean when genes are linked together? ›

Linked genes are genes carried on the same chromosome. They are called "linked" because they are usually inherited together — if the offspring gets one of the genes then they are highly likely to get the other, almost as if the two genes were tied together.

What is the group of linked genes? ›

linkage group, in genetics, all of the genes on a single chromosome. They are inherited as a group; that is, during cell division they act and move as a unit rather than independently.

What are closely linked genes that are inherited together known as? ›

When closely placed genes on the same chromosome are inherited together the phenomenon is known as. Qualitative inheritance.

How can you tell if a gene is linked? ›

Genetic Mapping Using Linkage

Unlinked genes may be on different chromosomes, or so far apart on the same chromosome that they are often separated by recombination. If two genes are inherited together more than 50% of the time, this is evidence that they are linked on the same chromosome.

Why do certain genes tend to be inherited together? ›

Certain genes tend to be inherited together in a cell at a time of cell division since those genes are linked together in the same chromosome. Those genes don't follow Mendelian Genetics i.e. They don't show independent assortment.

What are the factors affecting linkage in genetics? ›

Distance between the genes: As the distance between genes increases, chance of linkage decreases. Age: With increase in age, chances of crossing over decreases which results in the increase of linkage. Temperature: Rise in temperature causes the chances of chiasmata formation. It decreases the strength of linkage.

How are genes transferred? ›

Gene Transfer: The introduction of new DNA into an existing organism's cell, usually by vectors such as plasmids and modified viruses. Cells may be modified ex vivo for subsequent administration to humans, or may be altered in vivo by gene therapy given directly to the subject.

What is the transfer of genes from parents to their offspring called? ›

But when people talk about genes being passed on, they generally don't mean genes being passed on from cell to cell during cell division. Instead, they usually mean genes being passed on from parents to children. This is known as "heredity" or "inherited genes."

What is the transfer of genes from an organism to its offspring? ›

Through the fusion of sperm and egg, each parent contributes half of its genome (an organism's entire repertoire of genes) to its offspring, but the composition of that half varies in each parental sex cell and hence in each cross.

What is the phenomenon of linkage and crossing over? ›

Linkage is the tendency of inheriting genes together on the same chromosome. Linkage occurs when two genes are closer to each other on the same chromosome. On the other hand, Crossing Over takes place when two genes are located far apart on the same chromosome. Crossing Over may disrupt the gene groups made by Linkage.

What principle did the phenomenon of linkage disproved? ›

Linked Genes Violate the Law of Independent Assortment. Although all of Mendel's pea characteristics behaved according to the law of independent assortment, we now know that some allele combinations are not inherited independently of each other.

What is the phenomenon of gene imprinting? ›

​Genetic Imprinting

Genomic imprinting is the process by which only one copy of a gene in an individual (either from their mother or their father) is expressed, while the other copy is suppressed.

What is the phenomenon of closely placed genes? ›

Tendency of genes located on the same chromosome, to stay together in hereditary transmission, is known as linkage.

Top Articles
Latest Posts
Article information

Author: Reed Wilderman

Last Updated:

Views: 5740

Rating: 4.1 / 5 (72 voted)

Reviews: 87% of readers found this page helpful

Author information

Name: Reed Wilderman

Birthday: 1992-06-14

Address: 998 Estell Village, Lake Oscarberg, SD 48713-6877

Phone: +21813267449721

Job: Technology Engineer

Hobby: Swimming, Do it yourself, Beekeeping, Lapidary, Cosplaying, Hiking, Graffiti

Introduction: My name is Reed Wilderman, I am a faithful, bright, lucky, adventurous, lively, rich, vast person who loves writing and wants to share my knowledge and understanding with you.